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LOW FREQUENCY DIELECTRIC RESPONSE OF A}~ ORGP,NOARSENIC POLYMER (CH3As)~

J. E. Lewis and A. L. Rheingold

Departments of Physics and Chemistry
State University of New York
Plattsburgh, NY 12901, U.S.A. ~~~~
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.1

The dielectric relaxation behavior of bis [catena-poly

(methylarsenic)], (CH3As)
~
, at excitation frequencies below

10 Hz is highly anomalous, varying as w’’9. This behavior

is examined in terms of Jonscher’s ‘universal ’ dielectric

response.
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I. INTRODUCTION

Bis [catena-poly (methylarsenic)), empirical formula (CH3As)
~
, is the first-

discovered member of a novel structural type1. It is a crystalline organoarsenic

“polymer” formed by the stacking of CH3As-AsCH3 units in ladder fashion as de-

termined by x-ray crystallographic analysis2. The a.c. and d.c. electrical pro-

perties of the polymer, herein called BCPMA, have been described in some detail3.

• The imaginary part of the sample impedance, which can be interpreted as a capaci-

tance, was found to vary approximately inversely with excitation frequency, for

• - frequencies below about 10 Hz.

This behavior is usually considered to be extrinsic in nature, due to inter-

facial electrode phenomena, but other experimental evidence, notably the exponen-

tial dependence of the dielectric relaxation time of BCPMA with inverse temperature

and the frequency and temperature ranges in which the loss peak occurs, is more

indicative of an intrinsic origin of the phenomenon. Such high dielectric con-

stant effects were initially reported by Pohi and coworkers46 who suggested that

a new type of polarization mechanism, hyperelectronic polarization , was present

in their samples. Hyperelectronic polarization may be considered due to the inter-

action (with the external electric field) of charged pairs of excitons, localized

temporarily on long, highly polarizable molecules. Thus the effect is most likely

to be seen in semi-conducting materials with extended structures.

More recently this same low frequency dielectric behavior has been found in

materials whose carrier transport is via electronic hopping--the amorphous and

glassy semiconductors. In fact, such behavior has been termed ‘universal’ by

Jonscher7 who gives long lists of diverse solid dielectrics that vary as ~n-.l (n.cl)

‘u at low frequencies, from spattered films of lead-zinc-niobate to dry sand.

In an effort to clarify the dielectric response of BCPMA , a long-chain semi-

conductor, we have studied its response to transient voltages of the step-function

and ramp-function type. It is well known8 that the use of charging and discharging

-~ ••- •- —•---—.‘••---•-••—•- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - • ••-.----•• •__•i._•. ••••
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currents yields data for the complex dielectric constant at very low frequencies,

below 10 Hz, the frequency range where the dielectric anomaly is seen in BCPM~L.

It is noteworthy that the a.c. conduction process in BCPMA has been determined

to be carrier hopping between localized sites, although the material is an in-

trinsic semiconductor at d.c. frequencies. This is the same a.c. carrier process

as in the glassy and amorphous semiconductors where similar anomalous low-frequency

dielectric behavior can be inferred from low-frequency a.c. conductivity data7.

However the system in which Pohl observed the most dramatic hyperelectronic polari-

zability, a polyacene quinone radical polymer6, is also a planar ladder polymer.

In the present system, extensive electron delocalization must occur through d-

orbital centers on arsenic; that these d-orbital centers can result in a “con-

jugated” system similar to the it-electron conjugation in Pohi’s polyacene polymer

is not unreasonable.

II. EXPERIMENTAL

The synthesis and characterization of BCPMA has been described in several

reports1’3’9. BCPMA typically forms in irregular crystallite clusters of milli-

meter dimensions, which precludes fabrication of samples to the usual geometrical

shapes used in dielectric work. Consequently, gold wires of 0.005-itt (0.127 mm)

diameter were directly attached to selected crystals of BCPMA using a commercial

silver-epoxy glue. Contacts were then baked for several hours at 60°C after which

• they were found to be both mechanically and electrically sound.

Samples were housed in a variable-temperature, light-tight shielded enclosure,

Cu-Constantan thermocouples being used to measure the temperature. Particular

attention was paid to the interconnections between the sample and the measuring

circuit, as the impedance involved were quite high, introducing problems associated

with noise and system response time.

The sample was excited by voltage transients of either the step-function or

~~I1s,~ - ~~~~~~~ ~~• — - -  — ‘ -~~~~~~~~~~~~~~~~~~
-‘ ‘~~~~~~ ~~~~~~~~~ ~~~~ 1~ _~~~~t~~ ’ •~~~~~~~~~ -
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the ramp-function type from a Wavetek model 114 signal generator. The resulting

charging or discharging current was measured by a Keithley model 615 digital

electrometer in its fast response mode. The electrometer has an input impedance

in excess of 1014 ohm and can measure currents as low as 10-14 amp. The output

of the electrometer was displayed on either a chart recorder (Honeywell model 196)

or an oscilloscope (Tektronix model 556).

The maximum voltage employed was 32 volts, corresponding to a field strength

of approximately 1000 Vcm”~ and the longest time interval considered for the

transient waveforms was 1000 sec, limited by the signal generator. Times in excess

of l0~ sec were required to obtain the d.c. steady-state current through the samples,

especially at the lower voltages. A highly regulated d.c. power supply was used

for this task.

III. GENERAL THEORY

A. Step Voltage

Writing the dielectric constant c(w) of the material terms of its relative

perinittivity c’ (w) and dielectric loss factor c” (w), i.e., c(w) = c ’ (w) - je (w),

and assuming that the dielectric material is linear so that the principle of super-

position can be applied, it can be shown’° that in the case of a step voltage
applied at t = 0 to a conducting dielectric,

e’. (w) = I [c0. + • (t) cos wt dt (1)

e” ~~ 
= [ G0 + 

~ (t) sin wt dt 1 (2)
Co (A) C O O  J

where Cm = capacitance of dielectric at very high frequencies, in farads,

C0 = capacitance of the system when sample is replaced by air, in farads,

G0 = steady-state d.c. conductance of the material, in ohm~~,

•(t) = current decay function for the material, in amp volt~~,

w = angular frequency, w = 2irf, f is frequency in hertz.

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
••—•—
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The decay function 0(t) is obtained from the charging current 1(t) by the

relationship

0(t) = (1(t) -

• where 1(m) is the final steady-state current (i.e., at t + m) and V0 is the size

of the step voltage applied.

For many dielectrics it is found that the decay function can be approximated

over a wide range of values by

0(t) = KCmt~~ (3)

• with K and n constants for a dielectric at any one temperature, and n - 1. The

integrals (1) and (2) can then be evaluated to give

c ’ (w) = S [i + ~~~~~ r (l-n)cos(l_n)it1] 0< n <1 (4)

C ” ((A ) )  = 

~J_ ~~‘~O + KCmW~~
11’ (l-n)cos ~ < n < 2 (5)

Eq. (5) for the dielectric loss factor can be greatly simplified10 if

0.3 < n < 1.2 when

C ”( W ) 
~ 

to within +3% (6)

or c”(w) 1 (0.1/f) in terms of frequency (7)

where 1(t) is the total current flowing in the material at time t. More importantly,

this approximate result is still quite acceptable9 even when the decay function

departs considerably from the empirical expression, Eq. (3). Unfortunately, there

is no equivalent simplification for the relative permittivity as the expression

is not nearly so independent of the value of n. However, as £ ‘(w) and c”(w) are

related to each other in a linear system, no new information is gained by the

evaluation of the integral.

Hence, the dielectric loss factor at frequency f can be evaluated to a

sufficient accuracy in terms of the total charging current at a time t = 0.1/f sec

after the application of a step voltage V0 to the sample. The method is independent

- ~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of C,,, K, and n, and of the relative magnitudes of the decay current V0~(t) and

conduction current V0G0, only the capacitance of the system in the absence of

the dielectric being required to determine c”(w).

B. Ramp Voltage

The charging current in the case of a step voltage is dominated by a brief

initial surge due to the instantaneous onset of the electronic and atomic polari-

zation (broadened by the response time of the measuring system), which can be many

orders of magnitude greater than the current due to the (low frequency) orientation

polarization. This necessitates employing special techniques to by-pass the initial

surge, and complicates the experimental details of the measuring circuits. This

problem can be obviated by applying a ramp voltage V(t) = V0t/T, o ~ t ~ T, to the

sample in place of the step voltage. The resulting charging current 1(t) is given,

from elementary circuit theory12, assuming the sample to be a Debye dielectric with

a parallel conducting path, by

1(t) = C0V0 
[C~~ + (C -c,,,) (l_exp(_t/r))] + 

~~~~~~~
. (8)

R0T

where c,, = the high-frequency relative perniittivity of the sample,

C 5 = the static (d.c.) relative permittivity of the sample,

t = the single relaxation time of the sample (assumed to be a Debye dielectric)

in seconds,

V0 = the maximum voltage the ramp attains, t seconds after its application

to the initially quiescient sample, in volts,

R0 = the d.c. resistance of the sample, in ohms,

C0 = the capacitance between the electrodes in the absence of any sample, in

farads.

Clearly, the leading term within the square brackets in Eq. (8) (C0V0 £m)/T,

can be made small in comparison with the initial surge in the step-voltage response,

and the second term within the brackets is zero at t = 0 whereas the corresponding

- •-••---—P--• ~~~~~~~~~~ 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~ • • - 
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one for the step-voltage response is not. Thus, large transients at very short

times are no longer an experimental problem. However, correct identification of

• the leading term in Eq. (8) is still difficult, as it is somewhat modified by the

response time of the measuring circuit.

This result can be readily generalized to the more realistic case of a non-

Debye dielectric, now characterized by a distribution of relaxation times rather

than the unique relaxation time of a perfect Debye dielectric. This distribution

function is defined by~~

~(t) = E f(’r)exp(-t/t)dt, with f~ f(t)dt = 1

where ~(t) is the decay function of the sample. The fitting of the observed

currents to the generalized result is difficult, however, and requires extensive

computation. For many systems the difference between the observed current and that

given by Eq. (8) is small, and only a slight error is made in analyzing the behavior

via this equation, at a considerable saving of time and effort.

The expected response of a Debye dielectric with parallel conducting path

is shown in Fig. 1. The response is in three parts. For very short times the

response is dominated by the initial term in Eq. (6), modified slightly by the

finite response time of the circuit. Shortly thereafter, the exponential charging

of the dielectric takes over and one observes a slowly increasing rise in the

charging current. At very long times, however, the current does not saturate,

but continues to rise linearly with time due to the parallel conduction current.

Examination of Eq. (8) and Fig. 1 shows that the initial current 1(o) = (C0V0Cm)/T = A

and that the linear region at times approaching T extrapolates back to give an

intercept (C0V0 c5)/T = B, at t 0, and a slope V0/R0T, from which the bulk d.c.

resistance R0 of the sample may be estimated. The difference between 1(t) and the

(extrapolated) linear region is

1(t) (C~ - c..) C0V0exp (—t/T) (9)
I

When plotted on log-linear coordinates Eq. (9) yields a value for t from the slope

-••— —~---•-- -
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of the resulting straight line. The quotient A/B gives the ratio of the static,

relative permittivity for the sample, E $/Em . The method can be checked by observing

the degree to which the current obeys Eq. (9), and also by plotting A versus V0/T

and B versus V0/T for various values of V0 and T. A linear dielectric should

yield straight lines for these two expressions.

IV. RESULTS AND DISCUSSION

• A. Step Voltage

The response of the sample to step-voltage waveforms was measured at room

temperature (295 K) and at 119°C (392 K), for various voltage amplitudes between

0.7 and 30 volts. Figure 2 shows a result for T = 295 K and V0 = 10 volts, and is

• typical of the response found in BCPMA for all the voltages used at both temperatures.

An initial surge current, whose peak values is in excess of 100 pA appears for

t < 1 sec, followed immediately by a decay of the current, initially quite precipi-

tous, later (t > 50 sec) much more leisurely, to a final steady value I~ = 7.5 pA

found at t > 104 sec. Using this value of I~, the decay function ~~t) can be ob-

tained from Fig. 2 as c
~(t) = (1(t) -

A plot of log ~~t) versus log t is shown in Fig. 3, and corresponds to the

data of Fig. 2. As can be seen, for 2 < t < 1000 sec the decay function for BCPMA

can be accurately expressed as a simple power of the time. In this example

4(t) — 2.6/t0~
59 pA volt~~. The value of n, 0.59, is within the limits (0.3 - 1.2)

set by Harmon for the acceptable use of his approximate expression for the dielectric

loss factor11. Similar values of n were found for the other voltages used, and

also at the higher temperature. Consequently, the dielectric loss factor c”(f) can

be found for BCPMA by simple application of Eq. (7) to the sample response curves

1(t) versus t.

Only the frequency variation of c”, however, was det~:mined in the present

study as the irregular shape of the samples does not permit an accurate value for

C0 to be obtained. An order of magnitude estimate of C0 (from sample dimensions)

~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ • •~ _ ~± ~~ ~~~~~ ~~~ • 
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would be about iO~~ pF. The results are shown in Fig. 4. Clearly, to within the

experimental error, the results are independent of the applied voltage, as indeed

they must be if the system is a linear dielect 1~ic. The dielectric loss factor

at the higher temperature is approximately 16 times larger than at room temperature.

The most unusual result, though, is the frequency dependence of c”. At both tem-

peratures, e” increases rapidly with decreasing frequency, and shows no indications

of leveling off and saturating. Although a certain amount of curvature can be

seen in the dependence of log C ” Ofl log f, to a satisfactory accuracy, in the

• 
• 

frequency range i0~~ to 10-1 Hz c”(f) = (A f °~
9)/C0 with A = 0.32 pF Hz-’ at

295 K and 4.17 pF Hz~~ at 392 K.

This particular dependence of c” on an inverse power of the frequency

implies from the Kamers-Kronig relationship10 between c ’ and c”

c ’ (w) - = 2 uc”(w)_ du
~ u2 -

that c ’(w) will also be strongly dependent on frequency in this region, essentially

given by c’(w) = c ’(co) + i,~m to first order in some logarithm of-~3 and where m is

approximately unity.

c’(u) has been previously reported8 to vary approximately as uf 0~
75 at room

temperature in the frequency range l0~~ to 1 Hz, with similar variations indicated

for temperatures between 77 and 400 K. These values were deduced from the variation

of sample capacitance with frequency, measured using a.c. detection techniques.

• The present results confirm this unusual behavior.

Experimental evidence, therefore, indicates that BCPMA enjoys an unusual

increase in its dielectric constant as frequencies approach d.c. conditions.

• This behavior is quite similar to that found in a wide variety of solid dielectrics.7

B. Ramp Voltage

The response of the samples to ramp-voltage waveforms could only be accurately

measured at room temperature, the conduction current overwhelming the dielectric

charging current at the higher temperature (392 K) due to the much smaller sample

_ _ _  - 
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• resistance involved (< i0~ ohir at 392 K compared to iol2 ohm at 300 K). This

three order of magnitude increase in conduction current is far in excess of the

one-order increase expected in c~ due to the temperature increase and hence the

dielectric charging current, C0V0 c5/T. Various maximum voltage amplitudes V0

between 0.4 and 32 volts were employed.

Figure 5 shows a typical response of a sample of BCPMA to a ramp waveform

V(t) = 0.16 t (i.e., 30 volts applied linearly over a time T = 190 sec). It is

quote similar to the theoretical expression graphed in Fig. 1, with two important

exceptions.

Firstly, the initial current step 1(o) = (C0V0c,3/T is absent, or rather, too

small to register on the current scale employed, 0.94 pA cm* This would indeed

be expected if an anomalous dielectric relaxation process were present in BCPMA

at very low frequencies as then cs/c,,, >> 1 and the charging current (C0V0 C5)/T

would be many times larger than the initial current step (C0V0 c,,j/T. That the

initial current step 1(o) is absent, and not merely masked by the measurement

system risetime, can be seen when the risetime of the current response for

O < t < 2 sec is evaluated. Risetimes (for all voltages employed) were of the order

of 1 sec. The system risetime (for step-voltage waveforms) was measured at less

than 3xl0 2 sec, at least one, sometimes two orders of magnitude smaller than

the current risetimes observed.

Secondly, the charging current was found to be approximately characterized

by two risetimes, r1 and T2, with r2 - ~~~~ indicating that the sample, as to be

expected, was not a perfect Debye dielectric. Even so, the simple theory is still

valid for t-~O and t-’~, with intercept at t = 0 still given by (CQVQ c5)/T and the

slope of the linear region by V0/R0T.

The sample risetimes were obtained by plotting i(t), the difference between

the response current and the extrapolated linear region, against time on semi-

logarithmic coordinates. The ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ in Fig. 5 is shown
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in Fig. 6 (circles). For 0 < t < 20 sec i(t) can be well fitted to the expression

1(t) = 4.72 exp (-3.03 t) + 2.74 exp (-0.20 t) pA

giving t 1 = 0.33 sec and 12 - lo i = 4.98 sec, and a final charging current

(C0V0 c5)/T = 7.46 pA. As expected, the intercept B of the linear region depends

linearly on applied voltage V0 (Fig. 7). With C0 approximately 10-1 pF and T = 190 sec,

the experimental value of the slope of the line in Fig. 7, when equated to C0 C5/T,

gives an estimate = 500, a rather large value for the static dielectric constant

of a material, but one consistent with the values found by Pohl and coworkers in

other polymeric systems46, and reported in other solid dielectric too.7 This high

value for c~ ensures that the ratio C5/Ec,>>l as c -l in most materials. It is

therefore not surprising that the current step A = C0V0Cm/T is absent in the response

of BCPMA to ramp waveforms.

The risetimes and 12 of the material were also found to be voltage dependent

(Fig. 8), both seemingly varying as VØ
¾, to within the admittedly large experimental

error. The data scatter is so much larger in the case of than 12 because the

current associated with T
1 
only dominates in the total charging current for such

a brief time (<3 sec) before it is masked by the current associated with 12.

Estimating risetimes from time bases as short as 2-3 sec results in these large

errors.

Finally, the slope of the linear region of the current response (Fig. 5)

enables an estimate of the bulk resistance of the sample to be made. Remarkably

uniform values for R0 were obtained, considering the large differences in the

values of V0 and I used in each case.

Setting R0 = V0/I and plotting log V0 versus log I, these data can be dis- -

played as i n F ig. 9 (so i p~thts~~—The~dataTà11 quite close to an ohmic line,

—~~~~~~~~~~~~~ th a re~iistance of h .SxlO
U ohm. The full triangles represent the bulk resistance

of the sample measured using normal d.c. potentiometric techniques. The agreement

is quite acceptable.

__________ .4
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The curvature seen in the behavior of these latter data, especially at very

low d.c. voltages (<100 mV) is probably due to both the great difficulty in arriving

at the true steady-state conduction current of the sample in finite measuring times

(t < several days), because of the extremely slow decay of the polarization current .

and also the limiting ability of the measuring circuit to detect such extremely

small currents. The currents finally recorded in th ese cases were probably still

in excess of the true d.c. current.

The behavior of the low-frequency dielectric loss in BCPMA (Fig. 4) is thus

quite typical of a large class of solid dielectrics where the dielectric loss in-

creases with decreasing frequency as w
_m 

and shows no sign of low frequency saturation

or decrease to zero as required by the Dehye model. While this behavior would

seem to be due to the discontinuous hopping of charged carriers in many materials- -

especially electrons in amorphous semiconductors, the models advanced for most

systems are ad hoc in nature and quite arbitrary, being typically distributions

of Debye relaxation processes but needing unphysically large ranges of relaxation

time . The very universitality of this dielectric response has led Jonscher7 to

suggest that only an extremely general mechanism, interest in all dielectrics, is

responsible for the observed common behavior. He proposes that the screening of

charges and dipoles as a result of many-body interactions is the required general

mechanism and has developed a screened-hopping model based on many-body formalism.

Qualitative agreement with observation is obtained . Give the lack of precise

quantitative models, the low frequency dielectric behavior of BCPMA is compatible

with the hopping of charged carriers between random localized centers, and is clearly

due to the same underlying ‘universal’ response postulated by Jonscher.
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CAPTIONS FOR FIGURES

Figure 1. Response of a Debye dielectric with parallel conduction path to a

ramp waveform (Eq. 6 with c0 = 3Em, 1= 0.l6T, and conduction current =

dielectric current at t = 1). 1(t) in arbitrary units.

Figure 2. 1(t) versus time for BCPMA at I = 295 K subjected to a step waveform,

magnitude 10 volts. 1(m) = 7.5 pA @ t>104 sec. 1(t)> 100 pA @ t<l Sec.

Figure 3. Log ~(t) versus time: the experimental points are from Fig. 2 , the

line represents best fit to the power law •(t) = 26t~°~
59 pA vo1t~~.

Figure 4. Log c”C0 versus log f for various step voltages applied at T = 392 K

and T = 295 K.

Figure 5. 1(t) versus time for BCPMA at 295 K subjected to a ramp waveform

V(t) = 0.l6t (i.e., 30 volts peak at T = 190 sec).

Figure 6. Log i(t) versus time: the experimental points are from Fig. 5, the

line represents the best fit to the double exponential expression

i(t) = 4.7e 3.°t + 2.7e~°~
2t pA.

Figure 7. Dependence of the intercept B on voltage V. Theoretical slope given

by C0 ~~/T, experimental slope 0.26 pA/volt giving c~ 500 for

I = 190 sec and C0 10-1 pF.

Figure 8. Log 11 and log 12 versus log V0. Lines are of the form t= AVØ~~ with

A = 11.3 (upper, 12) and 0.95 sec (lower, 11).

Figure 9. Log V0 versus log I at T = 295 K for: a) d.c. potentiometric measure-

ments (full triangles) and b) values of I obtained from I = V0/R0 (full

circles) with R0 given by the slope of linear conduction region in

sample response to a ramp waveform, slope = V0/R0T. Ohmic dependence,

R = 6.5 x 1011 ~
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